Role of Independent Self-Construal in Building Cohesiveness among Employees in Deleterious situation

Shakil Sabbir

Department of Business Administration Allama Iqbal Open University Islamabad, Pakistan. shak121314@gmail.com

Abstract

Working in a team cohesively is considered a key attribute in the contemporary environment. Project organizations are keenly concerned about project success and largely depend on the timely transition to various stages for project success. Team cohesiveness of all group members plays a pivotal role in project performance and completion. This study primarily examines the role of leader-member exchange differentiation towards team cohesion with mediating the role of relationship conflict. The basic premise rests with the assumption that the high leadermember exchange differentiation from project leaders causes relationship conflict among group members which further results in team disintegration. Moreover, the moderating role of self-construal was also examined on the mediated relationship. Assumingly the mediated relationship would have been weak for independently self-construed employees. A sample of 309 employees was collected using a questionnaire survey. The data was collected in three-time lags to control method bias from project organizations operating in construction, IT, development, capacity building, energy, and some other sectors. Results revealed a highly negative relationship between leader-member exchange differentiation and relationship conflict. A positive relationship was found between relationship conflict and team cohesion. In sum, the mediating role of relationship conflict was observed. Self-construal also showed strong moderating effects on various relationships hypothesized for the model. It shows that when leaders follow varying degrees of relationships with followers, it causes interpersonal conflicts among followers and with leaders as well. The relationship conflict results in opposing thoughts and behaviors without any group harmony. However, employees with strong self-belief, fully determined and passionate, avoid paying attention to any of the adversities and work diligently for group purposes. Discussions, conclusions and implications of the study are presented based on the results.

Keywords: Leader-Member Exchange, Self-Construal, Relationship Conflict, Team Cohesion

1. Introduction

Employee cohesiveness is ubiquitous in the corporate sector (van Gerwen, Buskens, van der Lippe, & development, 2018) and has become a cornerstone for organizational development (Nowak, 2020). Employee cohesion is taken as a dynamic process that is reflected in the tendency for a group to stick together and remain united in pursuit of its goals and objectives (Albert Carron, 1982). Employee cohesion is important for team effectiveness, creativity, and performance. More importantly, cohesion among group members creates synergy and helps to achieve success in project organizations (Imam & Zaheer, 2021). Various studies have been conducted to know the parsimonious factors causing team cohesion. Various individual, job, and organizational related factors have emerged as antecedents to team cohesion (Black, Kim, Rhee, Wang, & Sakchutchawan, 2019; Dey & Ganesh, 2020). Leader-member exchange differentiation (LMXD) has also shown strong explanatory power towards team cohesion. A

recent study conducted by Chen, He, and Weng (2018) showed that high LMX differentiations negatively affect cohesion among group members. Employees enjoying better relations strive high and work consistently towards group effectiveness (Chen et al., 2018). Similar findings were observed by Kong, Huang, Liu, Zhao, and Management (2017) where teams with lower LMX differentiation resulted in better tasks and social cohesion (Chiniara & Bentein, 2018; Manata & Studies, 2020). Studies are quite consistent about the negative role of LMXD and team cohesion, effectiveness, and performance (Li, Zhu, Park, & journal, 2018; R. Martin, Guillaume, Thomas, Lee, & Epitropaki, 2016; Tanskanen, Mäkelä, & Viitala, 2019). However, little is known of how LMX differentiation affects the group dynamics and then how such team interaction influences team cohesion especially in project organizations where team cohesion is of paramount importance (Anand, Vidyarthi, & Rolnicki, 2018; Yu, Matta, & Cornfield, 2018). In a recent meta-analytic review, Liao and Hui (2021) recommended investigating underlying mechanisms that lead towards various outcomes of LMX as well as the boundary conditions that create favorable outcomes.

To explore the question, we framed our model based on social identity theory (SIT). SIT clarifies a process to know and maintain membership with a particular group category to behave accordingly (Turner & Reynolds, 2010). Social comparison theory (Festinger, 1957) also supports the notion and contends that individuals strive to hold accurate self-evaluations with others. Employees in a given setting keep on comparing themselves to know their position in the "ingroup" and in the "outgroup" during the leader-member exchange relationship. With high leader-member exchange differentiation, a group deprived of supervisors' attention emerges termed as an outgroup which falls into relationship conflict with ingroup members as a response to power distance that drastically affects group cohesion.

Self-construal is conceptualized as a constellation of thoughts, feelings, and actions concerning one's relationship to the other and the self as distinct from others. The independent self-construal holds a self-governing view that emphasizes the separateness, internal attributes, and uniqueness of self. In contrast, interdependent self-construal holds an image of self-stressing connectedness, social context, and relationship (Markus & Kitayama, 1991; Singelis & bulletin, 1994). Hence, self-construal creates a boundary condition where employees with independent self-construal stay committed to group norms and show cohesion during project life by disregarding high LMX.

Our study attempts to contribute to the existing literature in several ways. First, our study is in response to the call by Liao and Hui (2021) to examine the underlying mechanism that might explain how LMX differentiation results in undesirable outcomes. Drawing on social identity and social comparison theories, we contend that high LMXD causes relationship conflict among group members that further lead to incoherence. Especially, followers falling in outgroup perceive rift with ingroup and leader as well which resultantly disintegrate team spirit. Second, we explain the moderating role of self-construal on the relationship between LMX and team cohesion mediated by relationship conflict.

The moderating effect of self-construal is aligned with the recent paradigm where individuals' self-images are examined as separate or connected with others. We propose that employees with independent self-construal may absorb the effects of LMXD and avoid falling into relationship conflict, unlike interdependent self-construed employees that result in group incoherence.

Lastly, we selected a context (project organizations) where team cohesion is considered indispensable for effective project success (Imam & Zaheer, 2021). Projects have defined life which requires timely transitions to various stages (I. Martin, 2017). Since multiple activities are carried out from various teams hence, any conflict results in project delay. On the other hand, LMX theory posits the emergence of ingroup and outgroup in dyadic exchange relationships. Taken together, it would be interesting to see how LMXD causes relationship

conflict and group disintegration and how well independently self-construed individuals cope with the situation.

2. Literature Review

2.1 Leader-Member Exchange (LMX)

Leader-Member Exchange (LMX) as a construct holds a view about leaders' varying degree of relationship with followers (Smriti, Prajya, & Park). Due to time and other resources, a leader cannot pay equal attention to all followers. It results in the natural emergence to two groups called "ingroup" and "outgroup" (Henderson, Liden, Glibkowski, & Chaudhry, 2009; Smriti et al.). Members who belong to the ingroup are more trusted and enjoy a better work and working environment in contrast to the outgroup, and remain deprived of leader closeness. The varying degree of exchange relationship with group members is referred to as LMX differentiation (Liden et al., 2006). LMX as a construct is based on social exchange theory (Blau, 1964; Gouldner, 1960) which posits the exchange process behind all relationships. The attenuation of the exchange process results in different outcomes. For example, organizations where leader-member exchange differentiation is high, experience stress, inefficiency, counterproductive behaviors, and performance issues (Marstand, Martin, & Epitropaki, 2017; Mumtaz & Rowley, 2020; Zivnuska, Kacmar, & Valle, 2017). Hence Leader-member exchange is studied as a group-level construct referring to the extent to which followers working with the leader enjoy varying nature of LMX relationship quality with their leader" (Ma & Qu, 2010).

2.2 Relationship Conflict

Conflict can be defined as awareness by the parties involved that there are discrepancies, or incompatible wishes or desires present (Boulding, 1963). Extant research shows the different categorizations of conflict. Broadly, conflict can be over substantive issues such as differences of opinion or ideas about the correct way to approach a task or solve a problem, known as task conflict. Likewise, conflict can be due to socio-emotional or interpersonal disagreements that are usually associated with feelings of frustration and hatred (Guetzkow & Gyr, 1954; Jehn, 1995). The reason for the relationship conflict is attributed to factors related to the conflict partner or the relationship between the partners, as opposed to the situational attributions made in task conflict.

Task conflict has acquired both favorable and unfavorable views. According to some researchers, a moderate level of task conflict may result in better creativity (Farh, Lee, & Farh, 2010) and team effectiveness (O'Neill, Allen, & Practice, 2014). In contrast, relationship conflict is taken as an aversive phenomenon considering the undesirable outcomes including workplace politics (Bai, Han, & Harms, 2016), organizational cynicism (Aslam, Ilyas, & Imran, 2016), and impaired teamwork quality (Vîrgă et al., 2014).

2.3 Self-Construal

Self-construal defines self-image or as the extent to which the self is defined independently of others or interdependently from others. Individuals with a distinct self with others are called independent self-construal. Likewise, individuals defining their views of self because of others are characterized as interdependent self-construal (Markus & Kitayama, 1991; Singelis & bulletin, 1994). Both orientations have strong bearings on the way people think and behave. It has been suggested that priming these two types of self-construal affects cognition especially about context-sensitivity (Cross, Hardin, Gercek-Swing, & Review, 2011). For example, employees interdependently construed pay attention to others and social context comparing an independent self-construal (Cheng & Lam, 2007; Utz & Identity, 2004). Independent and interdependent self-construal is contrasted from individualism-collectivism, where people have

varying focus over goals (Singelis & bulletin, 1994). In individualistic society personal goals are subordinated whereas people pay more attention to group goals (Lukes, 2006).

Self-construal is not only a way to understand self-image rather it is a way to view oneself in a social setting (Grace & Cramer, 2003). When people are interdependent self-construed, their thoughts and behaviors are sensitized to group norms (Levine et al., 2003). Because of a self-embedded relationship with a larger social group, it results in a different nature of values, emotions, and social behavior (Cross, Bacon, Morris, & psychology, 2000).

2.4 Team Cohesiveness

From the last few years, team cohesion has acquired paramount importance in the management literature due to workplace dynamism and environmental complexity (Van der Voet & Steijn, 2021). Team cohesion is generally defined as a bond that holds the team members together (State-Davey, 2009). According to Kozlowski and Ilgen (2006), team cohesion refers to the degree to which team members are united, and how well they are pursuing team goals in a coordinated way. With a strong sense of collective purpose and belongingness, team members strive high to achieve goals (Driskell, Salas, & Driskell, 2018). A strong sense of interdependence and cooperation has led to team effectiveness in various ways. Initially, cohesion was conceived as a unidimensional construct (Back & communication, 1950) since the operationalization was made about members remaining in the group due to the prestige of the group or the activities of the group. Later authors characterized team cohesion as a multidimensional construct encompassing two separate facets, social and task cohesion (Dion & practice, 2000). Social cohesion is about the extent to which group members stick together in different settings whereas task cohesion represents the united efforts to reach collective goals. Team cohesion as a construct has been proved to be a strong predictor to work engagement (Salcedo, 2016), team creativity (Joo, Song, Lim, Yoon, & Development, 2012), and team performance (Mathieu, Kukenberger, D'innocenzo, & Reilly, 2015).

2.5 Theoretical Foundations

Social identity theory (SIT) provided the basic foundation for our study. Social identity theory explains the process of how employees develop and preserve identities in a group setting. The theory posits that employees categorize their social world into "us" and "them" based on three key corollaries; social categorization, social identification, and social comparison (Turner & Reynolds, 2010).

Social categorization provides the basis for group identity to know individuals' perceived membership in an ingroup and an outgroup. There exist various ways for social categorization but broadly squeezed into personal identities or social identities. Personal identities are defined in terms of personal characteristics and traits (e.g., extrovert, creative) whereas social identities are tied to a specific group one represents (e.g., atheist, female, American) (Hogg, 2020).

Social categorization helps to determine social identity whereas social identity is a way to know particular group membership. As individuals get to know the group categories, it helps to place them accordingly as if they are male or female, American or Arab otherwise (Scheepers & Ellemers, 2019).

With clear social identity, individuals take on comparing themselves with out-group members in a favorable way, called social comparison. People evaluate and make judgments about themselves concerning others. Social comparison is not only a way to determine self-concept but also a way to behave in social interaction. In a work setting highly characterized with LMXD, social comparison leads to placing them in an ingroup or outgroup. The members of the outgroup feel a strain viewing all benefits and privileges rest with the ingroup. Resultantly relationship conflict emerges which further creates group disharmony. In the same vein, social identity supports self-construal as boundary conditions. Employees with independent self-

identity where they have a clear vision and path to follow, avoid any kind of perceived group membership and emphasize their thoughts, abilities, and feelings (Festinger, 1957).

2.6 Leader-Member Exchange Differentiation and Relationship Conflict

Leader-member exchange differentiation results in the natural emergence of a group lacking the leader's attention, care, and time termed as outgroup. The outgroup perceives the environment highlight biased where a small is advantageous (Henderson et al., 2009; Liden et al., 2006). The perception results in a rift in routine interpersonal relations even when ingroup members never engaged in an activity opposing outgroup members. Opposing viewpoints, personality clashes and negative emotional interactions represents the relationship conflict (Choi, Kraimer, & Seibert, 2020). The previous study has also shown a strong positive relationship between leader-member exchange differentiation and relationship conflict (Bradley, Liu, & Zhang, 2020; Choi et al., 2020; Zhou & Shi, 2014). Foregoing helps to provide the following hypothesis;

H1: Leader-Member Exchange Differentiation is positively related to relationship conflict.

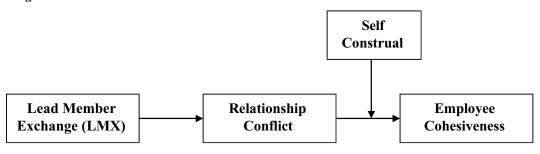
2.7 Relationship Conflict and Group Cohesion

Employees with strong personality clashes and incompatibilities stay away even when the organization demands so (Van der Vliert, 2013). According to some authors, relationship conflict is among the worst type of conflict that creates a divide among group members (Sliter, Pui, Sliter, & Jex, 2011). Task and process conflicts at a moderate level are considered productive in some situations. A high level of task and process conflict may turn into relationship conflict which is harmful to organizational working (Stephen P Robbins & Judge, 2013). Relationship conflict weakens the sense of collectivism and unitary, therefore, employees can't be connected socially and work jointly for common goals (Costa, Passos, Bakker, & Research, 2015; Tekleab & Quigley, 2014). The study of Espedalen (2016) showed a strong negative relationship between relationship conflict and team cohesion Earlier studies have also reported a negative relation between relationship conflict and team cohesion (Sullivan & Feltz, 2001; Tekleab, Quigley, Tesluk, & Management, 2009). These arguments helped to provide the following hypothesis;

H2: Relationship conflict is positively related to team cohesion.

2.8 The mediating role of Relationship Conflict

The mediating role of relationship conflict between LMXD and team cohesion was framed following the axiom of stimulus organism and reaction (SOR) framework. The roots of SOR are traced back to environmental psychology, which proposes that environmental factors function as an impetus to arouse organismic experiences, which further generate responses (Mehrabian & Russell, 1974). The stimulus may range from a variety of organization or jobrelated factors that spur cognitive processes which result in attitudinal or behavior response (Marston, King, & Marston, 1999; Wilder, 2014). In this case, high LMXD forms a key environmental cue that causes cognitive processes in the form of relationship conflict. Employees feel a personal rift with groups close to leaders. The resultant outcome is team incoherence where employees follow the solo path to meet self goals rather than organizational. The existing empirical evidence, about the relationship between LMXD and relationship conflict (Zhou & Shi, 2014) and relationship conflict to team cohesion (Espedalen, 2016) further supports the mediating role of relationship conflict between LMXD to team cohesion. It helped to assume the following:


H3: Relationship conflict mediates the relationship between Leader-Member Exchange Differentiation and team cohesion.

2.9 The moderating role of Self-Construal Conflict

Social identity theory (SIT) provided grounds to hypothesize the moderating role of self-construal on the mediated path of the relationship between LMXD and team cohesion (Turner & Reynolds, 2010). SIT postulates that individuals' behavior is based on the self-image derived from perceived membership to a group. Employees strive to achieve a satisfactory self-image and positive self-esteem. When the self-image is independently constructed, they are least concerned about the issues and behaviors of others (Festinger, 1957; Turner & Reynolds, 2010). Employees' identity if construed to achieve more to satisfy self-esteem, attenuate the path following relationship conflict, and encourage to be a part of group goals. Employees believe that individual goals are converged into organizational goals, hence working in a team is important for personal goals, a way to satisfy self-esteem. Hence, the above-mentioned arguments contributed to the development of the following hypothesis:

H4: Self-construal moderates the mediated model in a way that the relationship is weaker for employees high on independent self-construal and strong for employees high on interdependent self-construal.

Figure 1. Research Model

3. Research Methodology

3.1 Research Purpose

The basic premise of the study was to know the impact of leader-member exchange (LMX) on team cohesiveness with mediating role relationship conflict. The study also examined the moderating role of self-construal on the association between relationship conflicts to team cohesiveness. To test our proposed research model, we selected a context where team cohesiveness is of paramount importance. Project organizations share various novel characteristics such as degree of novelty, predetermined project life, cross-functional endeavors, and dual chain of command (Burford, 2012; Lester, 2017). Especially the timebound nature and executing parallel activities requires group working to achieve convergent goals. Hence group cohesiveness is among the key dynamics of project organizations. Secondly, the axiom of LMX portrays a natural emergent of In- and Out-group from within the team members (S.P. Robbins & Judge, 2017). Considering the efficient nature of project organizations, group development is expected and accepted as the project flows. Since outgroup members face more relationship conflict with in-group members and with the project manager hence high leader-member exchange relationship (LMX) may lead towards relationship conflict. In sum, we argue that high LMX results in relationship conflict which further causes team cohesiveness. Likewise, the study assumes the moderating role of self-construal. Project employees independently constructed may not leave the group harmony and work with team spirit despite the relationship conflict among group members.

Participants and Procedure

The study employed a questionnaire survey to collect data from project employees. To observe maximum variation, different project organizations were approached operating in the IT,

construction, and social sector. For response accuracy, employees with one year of working experience and sixteen years of education were approached. Employees who passed through at least one performance appraisal were approached considering their true understanding of study variables. The survey was anonymous and all efforts would be made to control social desirability response and common methods (Nederhof, 1985; Podsakoff, MacKenzie, Lee, & Podsakoff, 2003; Podsakoff & Organ, 1986). For example, the questionnaire contained detail about the purpose of the study, the anonymity of responses, and complete detail of the research team with the contact number of the principal author. The respondent could call the Principal investigator to discuss any ambiguity. The participation was at the will of the respondents and they could leave at any time and stage of the survey.

Likewise, both methodological and statistical measures were adopted to control common method variance Methodologically, the responses were separated into three-time waves making it a time-lagged study. In the first wave, employees had to fill the first items measuring LMX. Later after three months, the second part of the questionnaire was floated about relationship conflict and self-construal. After another three months, project employees had to fill the items measuring team cohesiveness. Pseudo-codes were assigned to each questionnaire at all parts for match-making. In total, 650 questionnaires were floated. With consistent efforts and reminders, a total of 431, 372, and 326 questionnaires were received after three-time waves. Finally, responses of 326 were examined using SPSS 26 and AMOS.

4. Measures

4.1 Leader-Member Exchange (LMX)

Leader-member exchange would be measured with the 12 items scale originally developed by Liden and Graen (1980). Sample statements include, "I do not mind working my hardest for my manager", and "I am willing to apply extra efforts, beyond those normally required, to meet my manager's work goals". The items are based on a five-point Likert scale of 1(strongly disagree) to 7 (strongly agree).

4.2 Relationship Conflict (RC)

To measure relationship conflict, four items are adopted from the study of Jehn (1995) Jehn (1994). The items have followed the orientation prescribed by Rahim (1983). All the items were anchored on a five-point scale ranging from 1 (None) to 5 (A Lot). Sample items were "How much friction is present in your workgroup?", and "To what extent are personality clashes present in your workgroup?

4.3 Team Cohesiveness (TC)

Team Cohesion will be measured with the help of 10 items scale developed by (AV Carron, Widmeyer, & Brawley, 1989) later validated by (Carless & De Paola, 2000). Sample items include "Our team is united in trying to reach its goals for performance" and "For me, this team is one of the most important social groups to which I belong". All the items were anchored on a five-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree).

4.4 Self Construal (SC)

Self-construal will be measured by using a 12 items scale developed by (Cross et al., 2000). Sample items included, "My close relationships are an important reflection of who I am", and "When I feel very close to someone, it often feels to me like that person is an important part of who I am". All the items were anchored onto a five-point Likert scale ranging from 1 (strongly disagree) to 7 (strongly agree).

5. Results

5.1 Demographic Analysis

The demography of the respondents revealed that the majority of respondents (32%) were between the age bracket of 36 to 40 followed by 29% between the age group of 26-30. A healthy representation was also made for the respondents between the age bracket of 31-35 (27%). Project organizations demand consistent work during various project phase transitions, therefore young workers are preferred. Only 11% of employees revealed their ages above 41 years.

Pakistan is characterized as a male dominant society. This is the reason, the majority included males 74% were male employees whereas only 26% were females took part in the survey. In Pakistan, a master's level of education is considered a reasonable level to survive. While showing education level, the majority claimed either master's level of education (16 years or above). 37% of respondents showed their education as 14 years bachelors. A small representation is also made from respondents claiming less than 14 years of education. Since youth constitute a vibrant group in Pakistan, hence the majority of respondents claimed 2 years or less experience. We made it mandatory to complete at least one year of experience, therefore in between 1 to 2 years of experience remained 35%. 31% had experienced between 2 to 5 years, whereas 33% had 6 years or above experience of working in project organizations. Project organizations offer competitive pay, therefore 35% of employees reported income between 51k to 100k which is considered quite reasonable keeping in view the current inflation. 28% claimed to earn between 101k to 150k, whereas 23% were earning above 150k. The majority of responses were received from the construction (29%) followed by IT (26%) and energy (12%) based organizations. Likewise, social welfare and development, and human capacity building organizations have participated with figures of 10% and 17% respectively. Projects and project organizations are commonly operating from the private sector. Therefore, maximum representation is made from the private sector constituting 52% of the sample. 37% representation is reported from semi-government organizations while employees from pure governments organizations remained 11% of the whole sample.

Figure 2. Demography of the Respondents

Demographical Profile of Respondents							
Variable	Items	Frequency	Percent				
	26-30	91	29.4				
Age	31-35	85	27.5				
J	36-40	98	31.7				
	41 or above	35	11.3				
G 1	Male	228	73.8				
Gender	Female	81	26.2				
Highest Level of Education	Less than Bachelors	56	18.1				
	Bachelors (14 Years)	116	37.5				
	Masters (16 Years) or above	137	44.3				
	Less than 2 Years	109	35.3				
Work Experience	2-5 Years	98	31.7				
(Projects only)	6-10 Years	66	21.4				
	11 or above	36	11.7				
	50k or Below	42	13.6				
Monthly Income (PKR)	51k-100k	109	35.3				
	101k-150k	87	28.2				
` ,	151k-200k	43	13.9				
	201k and above	28	9.1				

Journal	of	Workpla	ice Bel	havior	(JOWB)
---------	----	---------	---------	--------	--------

Vol	lume I	1(2))	20	21	Ì
$r \circ \iota$		(4)		, 0		Z

	Construction	88	28.5
	Information Technology (IT)	79	25.6
Project Nature	Energy	37	12.0
v	Social Welfare and Development	32	10.4
	Human Capacity	52	16.8
	Other	21	6.8
	Public / Government	34	11.0
Sector	Semi-Government	113	36.6
	Private	162	52.4

5.2 Method Bias Diagnosis

Before proceeding to analyze data and examine the hypothesis, we first verify if responses were tainted from possible common method bias. A Harman's single factor test recommended by Podsakoff et al. (2003) was applied in this regard. According to the author, the possibility of common method variance (CMV) is ruled out in the absence of any dominant factor. If 50% of the variance is explained by one factor, reveal the possibility of CMV. By constraining all the factors of the study into one, a total of 37.14% variance was calculated by one factor. Resultantly, we could believe that the responses were affected by common method bias.

Additionally, a common latent factor test was also conducted. A latent variable was added and regression lines were drawn to observed items. Regression weights were constrained to each of the observed items. The common variance was calculated as 18% for all the items loaded at the common latent factor.

Figure 3. Common Latent Factor Analysis

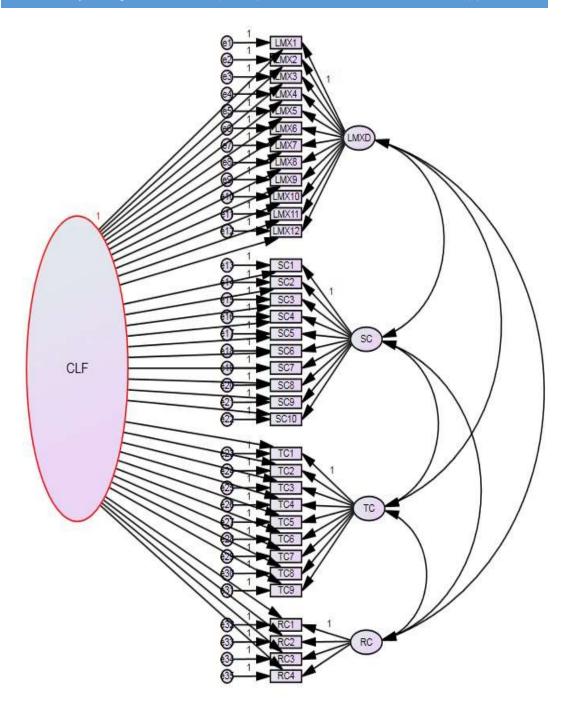
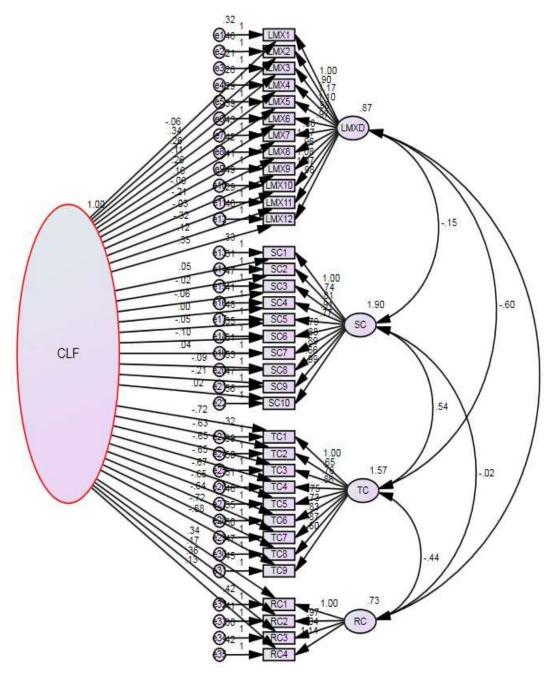



Figure 4. Common Latent Factor Analysis

5.3 Reliability Analysis

To examine the reliability of the constructs, the internal consistency score method was opted, known as Cronbach alpha reliabilities indicator. Cronbach Alpha greater than .70 indicates acceptable reliability (Nunnally, 1994). Analyses revealed that the internal consistency of all scales was above the acceptable value.

Cronbach's coefficient alpha is a widely used method to assess reliability but is also criticized because it assumes unidimensionality of constructs hence items follow the same factor loading and are interchangeable. These limitations make it lower bound and underestimating the true reliabilities. Alternatively, composite reliabilities are preferred that assume varying factor loadings. Composite reliabilities also higher than 0.7 indicate acceptable consistency (Hair, 2011). CR values for all the constructs of the study were also above the cutoff range.

5.4 Validity Analysis

The results of the CFA also provided detail to ensure construct validity. The KMO and Bartlett's Test of Sphericity (KMO= 0.902, p<0.001) ensured the sampling adequacy. Confirmatory factor analysis (CFA) was employed to evaluate the construct validity of the measurement model. Firstly, standardized factor loadings and average variance extracted (AVE) helped to ensure convergent validities. The AVE values of all the constructs were above 0.5 except SC11 which was dropped from further analysis. In conclusion, the construct managed to capture more than 50% variance (J. F. Hair, 2006). Moreover, all the items were loaded on the respective factors.

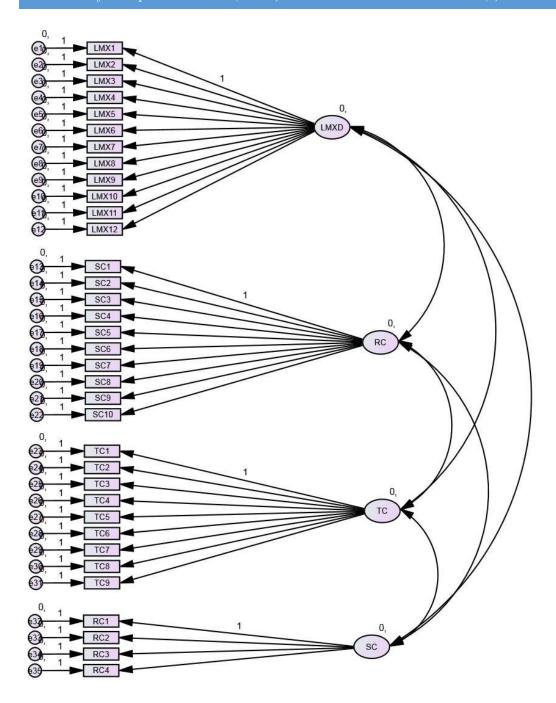

Discriminant validity was evaluated following two approaches. Fornell and Larcker (1981) and Bagozzi (1981) recommended comparing the average variance extracted (AVE) with maximum shared variance (MSV). If the maximum shared variance (MSV) is found lower than the average variance extracted (AVE) of the same construct, indicates discriminant validity. Secondly, the square root value of AVE was also compared with inter-construct correlations as recommended by J. Hair, Anderson, Black, and Babin (2016); J. F. Hair (2006). The inter construct correlations were lower than the corresponding square roots of AVE revealing discriminant validities among constructs.

Figure 5. Construct Validity

8						LMX	RC RC	TC	SC
Variables	Cronbach α	CR	AVE	MSV	MaxR(H)	LIVIX	ĸc	ic	SC
Leader-	0.96	0.962	0.679	0.331	0.967	0.824			
Member									
Exchange									
Deviation									
Relationship									
Conflict	0.89	0.894	0.679	0.331	0.897	0.575***	0.824		
							-	0.869	
Team Cohesion	0.96	0.965	0.756	0.233	0.967	-0.459***	0.483**		
Self-	0.94	0.954	0.682	0.077	0.97	-0.118*	-0.022	0.278*	0.826
Construal			2.302	'		3.110		**	

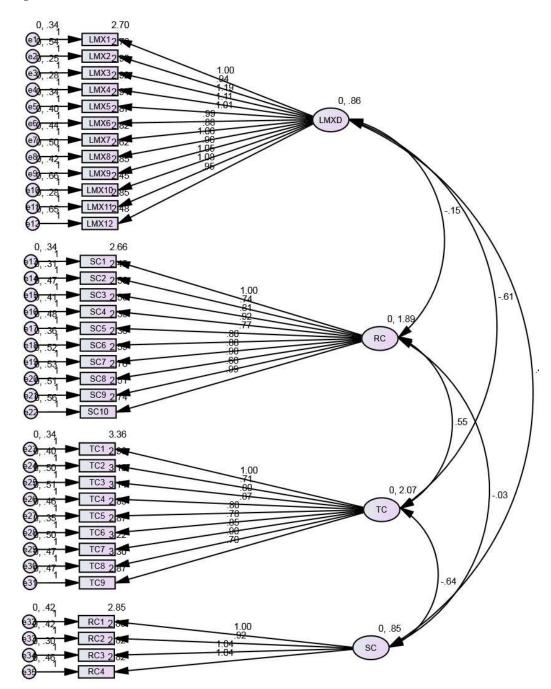

[†] p < 0.100; * p < 0.050; ** p < 0.010; *** p < 0.001

Figure 6. Measurement Model

N=309; LMX = Leader Member Exchange Differentiation, RC = Relationship Conflict, TC = Team Cohesion, SC = Self-Construal

Figure 7. Results of Measurement Model

N=309; LMX = Leader Member Exchange Differentiation, RC = Relationship Conflict, TC = Team Cohesion, SC = Self-Construal

Figure 8. Pattern Matrix

_	Factor								
Items	1	2	3	4					
LMX1	.860								
LMX2	.658								
LMX3	.843								
LMX4	.820								
LMX5	.740								
LMX6	.747								
LMX7	.775								
LMX8	.913								
LMX9	.805								
LMX10	.925								
LMX11	.851								
LMX12	.839								
RC1		.772							
RC2		.779							
RC3		.851							
RC4		.850							
TC1			.908						
TC2			.886						
TC3			.818						
TC4			.851						
TC5			.880						
TC6			.892						
TC7			.887						
TC8			.887						
TC9			.840						
SC1				.923					
SC2				.879					
SC3				.855					
SC4				.898					
SC5				.826					
SC6				.871					
SC7				.876					
SC8				.856					
SC9				.758					
SC10				.886					
Extraction Rotation M	Method: ethod: Proma		imum iser Norn	Likelihood. nalization.					
Rotation co	nverged in 5 i	Rotation converged in 5 iterations.							

Fit Indices of Measurement Model

With sound convergent and discriminant validities, we proceeded to test fit indices of the measurement model. Confirmatory factor analysis (CFA) was applied to evaluate the construct

validity of the measurement model using AMOS-23. CFA helped to ensure the consistency of the model with empirical data. The goodness-of-fit indices used in this study include chi-square (x^2 /df), RMSEA standardized root mean square residual (SRMR) Normed Fit Index (NFI) Comparative Fit Index (CFI) Incremental fit index (IFI). A detailed analysis of results obtained through CFA showed that the measurement model indicated an acceptable fit i.e. x^2 /df is 2.72, CFI=0.8911; NFI = 0.867; IFI = 0.905; RMSEA=0.075 and SRMR=.073 (J. F. Hair, 2006). In sum, the data achieved the requisite level of reliabilities, validities, and model fit. Given the acceptable construct validity and model fit, we moved towards testing the assumed hypothesis.

Figu	Figure 9. Model Fit Indices							
Fit Index	Measureme	Recommend						
	nt Model	ed Value						
x²/df	2.72	<5.00						
RMSEA	0.075	< 0.06						
SRMR	0.073	< 0.08						
NFI	0.867	>0.90						
CFI	0.911	>0.90						
IFI	0.905	>0.90						

Descriptive and Correlation Analysis

Descriptive results showed interesting results. Leader-member exchange differentiation 2.76 ± 0.97 (M±SD), and relationship conflict 2.85 ± 0.97 (M±SD), showed low mean values. Whereas mean values for team cohesion and self-construal were reported as 2.54 ± 0.97 (M±SD) and 3.08 ± 0.97 (M±SD), respectively.

Pearson's correlation analysis provided useful information about the direction and strength of the association between variables (Table 2). A significantly positive relationship was found between leader-member exchange deviation and relationship conflict (r = .524, p < 0.01). There was a significant negative relationship between leader-member exchange differentiation and team cohesion (r = .410, p < 0.01). Relationship conflict was found negatively related to team cohesion (r = .442, p < 0.01). Lastly, self-construal also found negatively related with relationship conflict (r = .013, p < 0.01) and team cohesion (r = .270, p < 0.01).

Figure 10. Means, Standard Deviations, Correlations, and Reliabilities

S #	Variabl es	M	SD	1	2	3	4
1	LMX	2.76	0.97	1			
2	RC	2.85	0.97	.524**	1		
3	TC	3.08	1.20	410**	442**	1	
4	SC	2.54	1.18	112*	013	.270**	1
n = 309;	*p<0.05; **	p<0.01;	***p<(0.001			

LMX = Leader Member Exchange Differentiation, RC = Relationship Conflict, TC = Team Cohesion, SC = Self-Construal

Moderated Regression Analysis

PROCESS Macro developed by Hayes (2017) helped to examine the moderated mediating model. **Model-59** was opted considering the nature of relationships hypothesized in the model. The model examined the mediating role of relationship conflict between leader-member exchange differentiation and team cohesion. Self-construal was assumed to moderate the mediated relationship. Parameters were set at 95% confidence intervals (CIs) of 1,000

bootstrap. If the CI for direct, mediating, and interaction terms does not include zero, moderated mediation exists.

The result of mediating analysis shows to support the indirect effects of LMXD on team cohesion through relationship conflict at the different levels of moderation (the indirect effect = -0.39 CI = [-0.46, -0.07] -.23 CI = [-0.30, -0.02] -.10 CI = [-0.29, -0.18]; 95%) as given in Figure, with un-standardized indirect effects and their corresponding significance. Conclusively H5 is fully supported.

Moderation analysis showed a significant interaction effect of self-construal on the relationship between leader-member exchange differentiation to team cohesion (β for LMXD x SC = 0.09, CI = [-0.05, 0.22]; 95%), leader-member exchange differentiation to relationship conflict (β for LMXD xSC = -0.04, CI = [-0.15, 0.06], 95%) and, relationship conflict to team cohesion (β for RC x SC = -0.19, CI = [0.09, 0.30]; 95%). Resultantly, it supports the moderating hypothesis.

Figure 11. Interaction Effect

	β	SE	t	p	LLCI	ULCI
Constant	6.17	0.48	12.77	0.00	5.22	7.12
RC	-0.95	0.17	-5.16	0.00	-1.28	-0.62
LMX	0.38	0.18	-2.18	0.03	-0.73	-0.04
RC*SC	0.19	0.05	3.57	0.00	0.09	0.30
SC	0.53	0.19	-2.76	0.01	-0.90	-0.15
Int (LMX x SC)	0.09	0.07	1.27	0.21	-0.05	0.22

Outcome Variable: Team Cohesion (TC)

LMX =Leader-Member Exchange; RC = Relationship Conflict; SC= Self-Construal

Results of PROCESS Procedure for SPSS

Model = 59 Sample size 309

Outcome: RC_M

1- Model Summary

R R-sq MSE F df1 df2 p .53 .28 .69 39.21 3.00 305.00 .00

1.1- Model

coeff р LLCI ULCI 1.03 2.85 .00 .32 Constant .36 LMXD .63 .13 4.99 .00 .38 .88 SC.15 .15 1.04 .30 -.14 .44 LMXDxSC -.04 .05 -.81 .42 -.15

Outcome: TC_M

2- Model Summary

R	R-sq	MS	E	F	df1	df2	p
59	34	.98	31.60		5.00	303.00	.00

2.1- Model

co	oeff s	se t	p	LLCI	ULC	CI
Constant	t 6.17	.48	12.77	.00	5.22	7.12
RC_M	95	.17	-5.61	.00	-1.28	62
LMX_M	.38	.18	-2.18	.03	73	04
RCxSC	.19	.05	3.56	.00	.09	.30
SC	53	.19 -2	.76 .	019	901	.5
LMXDx	SC .	0.0′	7 1.2	7 .21	05	.22

Conditional direct effect(s) of X on Y at values of the moderator(s):

Direct and Indirect	SC	Effect	SE	t	p	Boot LLCI	Boot ULCI
	1.36	26	.10	-2.71	.01	46	07
Effects	2.55	16	.07	-2.19	.03	30	02
	3.73	06	.12	47	.64	29	.18

Note. Bootstrap resample = 5,000; Conditions for moderator (Self-Construal) are the mean and plus/minus one standard deviation; SE = standard error; CI = confidence interval.

Conditional indirect effect(s) of X on Y at values of the moderator(s):

Mediator

SC Effect Boot SE BootLLCI BootULCI RC_M 1.36 -.39 .07 -.56 -.26

RC_M 2.55 -.23 .05 -.34 -.16 **RC_M** 3.73 -.10 .05 -.22 -.03

Values for quantitative moderators are the mean and plus/minus one SD from the mean.

Values for dichotomous moderators are the two values of the moderator.

Number of bootstrap samples for bias-corrected bootstrap confidence intervals: 1000

Figure 12. Indirect effects of Leader-Member exchange and Team Cohesiveness Through Relationship Conflict

Mediator	Effect	Boot SE	Boot LLCI	Boot ULCI
Self-Construal	-0.39	0.07	-0.56	-0.26
Self-Construal	-0.23	0.05	-0.34	-0.16
Self-Construal	0.10	0.05	-0.22	-0.03

Note. Bootstrap Resample =5000, SE = Standard Error, CI = Confidence Interval.

Figure 13. Conditional direct effect(s) Leader-Member Exchange on Team Cohesion at Self-Construal

	Moderator	Effect	SE	Boot LLCI	Boot ULCI
Self-construal	Low	-0.26	0.10	-0.46	-0.07
	Medium	-0.16	0.07	-0.30	-0.02

Journal of Workplace 1	Volume 1	Volume 1(2): 2020		
High	-0.06	0.12	-0.29	0.18

Note. Bootstrap resample = 5,000; Conditions for moderator (Self-Construal) are the mean and plus/minus one standard deviation; SE = standard error; CI = confidence interval.

Discussion

The study examined the relationship between leader-member exchange differentiation (LMXD) and team cohesion with mediating role of relationship conflict. The study also offers insight into boundary conditions created with self-construal for the mediated model. The impact of LMXD on team cohesion with mediating role of relationship conflict was assumed to be weak for employees with independent self-construal. A specific context of project organizations was selected to test all hypotheses. Project organizations have unique characteristics to survive and thrive. Team cohesion is indispensable to pass through various stages of the project life cycle and for project success. Results generally supported all the hypotheses. High LMXD was positively related to relationship conflict and relationship conflict was negatively related to team cohesion. Relationship conflict was also concluded as mediated between LMXD and team cohesion. In addition, individuals' self-construal orientation proved a moderating factor for the mediated mechanism.

The positive relationship between LMXD and relationship conflict reveals an equity paradox. Employees expect equitable relationships during work affairs (Adams, 1965). They need equal attention, privileges, and challenging work assignments from leaders. Any discrepancy results in a reaction. In this case, when leaders intentionally or unintentionally fail to create a balance among all followers, it creates a rift among two groups: a group close to a leader i.e. the "ingroup" and the group facing power distance i.e. "outgroup". The group invariably feels an incompatibility of thoughts, traits, and behavior known as relationship conflict. Previous studies have also endorsed a positive relationship between LMXD and relationship conflict (Chin-Yun, Long-Sheng, Ing-Chuang, & Kuo-Chin, 2010; Zhou & Shi, 2014).

The resultant outcome of relationship conflict is group disintegration which is reported through a negative relationship between relationship conflict and team cohesion. The outgroup takes the ingroup as a threat to their personal goals and growth. Outgroup employees face incompatible thoughts and behaviors. They avoid developing any connection with the ingroup which results in a divide between the two entities. Hence team cohesion is thoroughly challenged. The reported inverse relationship between relationship conflict and team cohesion is aligned with existing empirical evidence (Sullivan & Feltz, 2001; Tekleab et al., 2009).

Taken together, the mediating role of relationship conflict is supported between LMXD and team cohesion. The mediating path was framed following the axiom of social identity theory (Turner & Reynolds, 2010), which helps to know and secure group membership. Employees initially get to know the perceived formation of the group due to high LMXD and place themselves into an ingroup or outgroup (S.P. Robbins & Judge, 2017). Lastly, group comparison is also made to know the advantages and disadvantages associated with being a part of a group. With high LMXD, employees perceive friction that prevents them to be a member of a unified entity. Previously relationship conflict has mediated the path between transformational leadership styles and team information Elaboration (Cai, Jia, & Li, 2017) and also between role ambiguity and turnover intentions

(Hill, Chênevert, & Poitras, 2015).

Lastly, the moderating role of self-construal was also substantiated. The whole mediated model was moderated by self-construal. Independent self-construal are unitary and stable individuals free from any social context (Markus & Kitayama, 1991). They are confident about their efforts to reach personal goals. In contrast, interdependent self-construal are flexible and adaptive to follow group norms that they belong to. Their thoughts and behaviors are largely affected by

Volume 1(2): 2020

the group membership (Singelis & bulletin, 1994). The reason behind, varying relationships for independent and interdependent self-construal rest with their thoughts orientation. Project employees are independently self-construed, are driven by their thoughts and aspirations, never feel the threat of high LMXD (Utz & Identity, 2004). As a result, they enjoy good relations with peers and cooperate with others during project transitions on different stages.

Practical Implications

Like other studies in the field of management sciences, We put forward the following implications for practicing managers.

- Since LMXD has emerged as an adverse feature of organizational life, hence leaders need to have a complete understanding of leader-member exchange. Training sessions may be organized to inculcate the understanding of high LMX differentiation and their deplorable outcomes. More importantly, employees taking on managerial positions in project organizations should be examined about their understanding of LMXD and their equitable orientation towards employees in the workplace. In sum, both the hiring and development components of HR may help in this regard.
- Like previous studies, relationship conflict has emerged as the key impetus towards group incoherence. Employees may also be provided conflict management and resolution training to address such kinds of challenges.
- Independent self-construal is reported as a psychological reservoir to cope up with
 deleterious situations resulting due to high LMXD, hence employees high on
 independent self-construal be encouraged in project organizations. Moreover, showing
 independent self-construal tendency should be inducted by considering their score on
 the self-construal scale.

Theoretical Implications

Our study offers various theoretical implications that would be helpful for academia as listed below;

- The study re-validated the existing relationships between LMXD and relationship conflict and relationship conflict to team cohesion. In the same vein, the study contributed to the mediating role of relationship conflict between LMXD and team cohesion.
- Self-construal emerged as the key buffering factor to diffuse the adverse impact of LMXD on team cohesion mediated through relationship conflict. The results conclude that employees independently self-construed never take the impact of LMXD on relationships and on teams in the same way as interdependent self-construed employees.
- Lastly, our study complements social identity theory. Social identity theory posits that employees attempt to categorize, identify and compare their identity to others. The behaviors of employees are contingent upon their perceived association with a particular group. Following the norm of reciprocity, employees follow the behavior aligned with the behavior of other group members. In our study, project employees, if categorized into outgroups, follow a difficult path. They fall into relationship conflict with ingroup and avoid team spirit, an important feature of project life.

Limitations and future direction

Like other studies in the field of management and social sciences, our study also had some inherent limitations. Managers and academics may consider the limitations while generalizing the results.

Firstly, self-reported surveys and responses are susceptible to various biases. We tried to control biases by following the protocols accepted in the domain. We also calculated statistical tests to diagnose response biases. Secondly, the study was limited to project organizations within and in the near vicinity of twin cities of Pakistan. Results may be representative of the target population only. The sample represented the majority of males which also pose a question mark to generalize the results on both genders equally. Lastly, high Cronbach alpha values may also be treated cautiously. Though the reported values are within range, however, very high reliabilities indicate above and beyond inter-item correlation.

Given the limitations, the following recommendations are made which may help future researchers to conduct studies in continuation of the present cram.

- 1. Objective measures may be developed and adopted to collect true responses. Interviews and observational methods may also be applied to come close to objectivity.
- **2.** Future researchers may follow longitudinal research design to offset the vulnerabilities of cross-sectional and time-lagged design. Responses are sensitive to time. Data collection at two or three points time may further endorse the current findings.
- **3.** The model may also be replicated to other populations where team cohesion is of paramount importance. For example, flight operations, sports teams, and disaster management organizations may be studied in this regard.
- **4.** The research model may be tested in other cultural settings to see the similarities and differences. Especially, culture bearing low power distance and more individualism can be studied to further endorse the results.
- **5.** The study examined relationship conflict as a mediator and self-construal as a moderator. Other aversive factors such as organizational cynicism, psychological contract breach, organizational politics, and perceived injustice may be examined as mediators to have a detailed understanding of the underlying mechanism.
- **6.** Likewise, other personality traits and individual orientations may also be studied as moderators to see diverse boundary conditions limiting or augmenting the influence. For example, self-efficacy, GRIT, type-A, individual work ethics can be studied as contingency factors to see variations.

References

- Adams, J. S. (1965). Inequity in social exchange. In Advances in experimental social psychology (Vol. 2, pp. 267-299): Elsevier.
- Anand, S., Vidyarthi, P., & Rolnicki, S. J. T. L. Q. (2018). Leader-member exchange and organizational citizenship behaviors: Contextual effects of leader power distance and group task interdependence. 29(4), 489-500.
- Aslam, U., Ilyas, M., & Imran, M. K. J. J. o. O. C. M. (2016). Detrimental effects of cynicism on organizational change: an interactive model of organizational cynicism (a study of employees in public sector organizations).
- Back, K. W. J. T., & communication, e. i. s. (1950). The exertion of influence through social communication. 21-36.
- Bagozzi, R. P. (1981). Evaluating structural equation models with unobservable variables and measurement error: a comment. In: SAGE Publications Sage CA: Los Angeles, CA.
- Bai, Y., Han, G. H., & Harms, P. J. J. o. B. E. (2016). Team conflict mediates the effects of organizational politics on employee performance: A cross-level analysis in China. 139(1), 95-109.
- Black, J., Kim, K., Rhee, S., Wang, K., & Sakchutchawan, S. J. T. P. M. A. I. J. (2019). Self-efficacy and emotional intelligence: Influencing team cohesion to enhance team performance.
- Blau, P. (1964). 1964 Exchange and power in social life. New York: Wiley.

- Boulding, K. (1963). Conflict and Defense: a general theory. In: Harper & Row, Publishers, New York.
- Bradley, B., Liu, H.-h., & Zhang, X.-a. (2020). Look on the Bright Side of Task Conflict: Leader Member Exchange Differentiation & Team Performance. Paper presented at the Academy of Management Proceedings.
- Burford, L. D. (2012). Project Management for Flat Organizations: Cost Effective Steps to Achieving Successful Results: J. Ross Pub.
- Cai, Y., Jia, L., & Li, J. J. A. P. J. o. M. (2017). Dual-level transformational leadership and team information elaboration: The mediating role of relationship conflict and moderating role of middle way thinking. 34(2), 399-421.
- Carless, S. A., & De Paola, C. J. S. g. r. (2000). The measurement of cohesion in work teams. 31(1), 71-88.
- Carron, A. (1982). Cohesiveness in sport groups: Interpretations and considerations. Journal of Sport psychology, 4(2), 123-138.
- Carron, A., Widmeyer, W., & Brawley, L. J. C. j. o. s. s. J. c. d. s. d. s. (1989). The measurement of cohesion in sports teams: the Group Environment Questionnaire. 14(1), 55-59.
- Chen, X.-P., He, W., & Weng, L.-C. J. J. o. M. (2018). What is wrong with treating followers differently? The basis of leader-member exchange differentiation matters. 44(3), 946-971.
- Cheng, R. W. y., & Lam, S. f. J. B. J. o. E. P. (2007). Self-construal and social comparison effects. 77(1), 197-211.
- Chin-Yun, L., Long-Sheng, L., Ing-Chuang, H., & Kuo-Chin, L. (2010). Exploring the moderating effects of LMX quality and differentiation on the relationship between team coaching and team effectiveness. Paper presented at the 2010 International Conference on Management Science & Engineering 17th Annual Conference Proceedings.
- Chiniara, M., & Bentein, K. J. T. L. Q. (2018). The servant leadership advantage: When perceiving low differentiation in leader-member relationship quality influences team cohesion, team task performance and service OCB. 29(2), 333-345.
- Choi, D., Kraimer, M. L., & Seibert, S. E. J. J. o. O. B. (2020). Conflict, justice, and inequality: Why perceptions of leader-member exchange differentiation hurt performance in teams. 41(6), 567-586.
- Costa, P. L., Passos, A. M., Bakker, A. B. J. N., & Research, C. M. (2015). Direct and contextual influence of team conflict on team resources, team work engagement, and team performance. 8(4), 211-227.
- Cross, S. E., Bacon, P. L., Morris, M. L. J. J. o. p., & psychology, s. (2000). The relational-interdependent self-construal and relationships. 78(4), 791.
- Cross, S. E., Hardin, E. E., Gercek-Swing, B. J. P., & Review, S. P. (2011). The what, how, why, and where of self-construal. 15(2), 142-179.
- Dey, C., & Ganesh, M. J. T. P. M. A. I. J. (2020). Impact of team design and technical factors on team cohesion.
- Dion, K. L. J. G. D. T., research,, & practice. (2000). Group cohesion: From field of forces to multidimensional construct. 4(1), 7.
- Driskell, J. E., Salas, E., & Driskell, T. J. A. P. (2018). Foundations of teamwork and collaboration. 73(4), 334.
- Espedalen, L. E. (2016). The effect of team size on management team performance: the mediating role of relationship conflict and team cohesion.
- Farh, J.-L., Lee, C., & Farh, C. I. J. J. o. A. P. (2010). Task conflict and team creativity: a question of how much and when. 95(6), 1173.
- Festinger, L. J. S. E. T. (1957). Social comparison theory. 16.

- Fornell, C., & Larcker, D. F. J. J. o. m. r. (1981). Evaluating structural equation models with unobservable variables and measurement error. 18(1), 39-50.
- Gouldner, A. W. J. A. s. r. (1960). The norm of reciprocity: A preliminary statement. 161-178.
- Grace, S. L., & Cramer, K. L. J. T. J. o. s. p. (2003). The elusive nature of self-measurement: The self-construal scale versus the twenty statements test. 143(5), 649-668.
- Guetzkow, H., & Gyr, J. J. H. r. (1954). An analysis of conflict in decision-making groups. 7(3), 367-382.
- Hair, J., Anderson, R., Black, B., & Babin, B. (2016). Multivariate Data Analysis: Pearson Education.
- Hair, J. F. (2006). Multivariate Data Analysis: Pearson Prentice Hall.
- Hayes, A. F. (2017). Introduction to Mediation, Moderation, and Conditional Process Analysis, Second Edition: A Regression-Based Approach: Guilford Publications.
- Henderson, D. J., Liden, R. C., Glibkowski, B. C., & Chaudhry, A. J. T. 1. q. (2009). LMX differentiation: A multilevel review and examination of its antecedents and outcomes. 20(4), 517-534.
- Hill, K., Chênevert, D., & Poitras, J. J. I. J. o. C. M. (2015). Changes in relationship conflict as a mediator of the longitudinal relationship between changes in role ambiguity and turnover intentions.
- Hogg, M. A. (2020). Social identity theory: Stanford University Press.
- Imam, H., & Zaheer, M. K. J. I. J. o. P. M. (2021). Shared leadership and project success: The roles of knowledge sharing, cohesion and trust in the team.
- Jehn, K. A. J. A. s. q. (1995). A multimethod examination of the benefits and detriments of intragroup conflict. 256-282.
- Joo, B. K., Song, J. H., Lim, D. H., Yoon, S. W. J. I. J. o. T., & Development. (2012). Team creativity: The effects of perceived learning culture, developmental feedback and team cohesion. 16(2), 77-91.
- Kong, F., Huang, Y., Liu, P., Zhao, X. J. G., & Management, O. (2017). Why voice behavior? An integrative model of the need for affiliation, the quality of leader-member exchange, and group cohesion in predicting voice behavior. 42(6), 792-818.
- Kozlowski, S. W., & Ilgen, D. R. J. P. s. i. t. p. i. (2006). Enhancing the effectiveness of work groups and teams. 7(3), 77-124.
- Lester, A. (2017). Project Management, Planning and Control: Managing Engineering, Construction and Manufacturing Projects to PMI, APM and BSI Standards: Elsevier Science.
- Levine, T. R., Bresnahan, M. J., Park, H. S., Lapinski, M. K., Wittenbaum, G. M., Shearman, S. M., . . . Ohashi, R. J. H. C. R. (2003). Self-construal scales lack validity. 29(2), 210-252.
- Li, L., Zhu, Y., Park, C. J. S. B., & journal, P. a. i. (2018). Leader-member exchange, sales performance, job satisfaction, and organizational commitment affect turnover intention. 46(11), 1909-1922.
- Liao, E. Y., & Hui, C. J. A. P. J. o. M. (2021). A resource-based perspective on leader-member exchange: An updated meta-analysis. 38(1), 317-370.
- Liden, R. C., Erdogan, B., Wayne, S. J., Sparrowe, R. T. J. J. o. O. B. T. I. J. o. I., Occupational, Psychology, O., & Behavior. (2006). Leader-member exchange, differentiation, and task interdependence: implications for individual and group performance. 27(6), 723-746.
- Liden, R. C., & Graen, G. J. A. o. M. j. (1980). Generalizability of the vertical dyad linkage model of leadership. 23(3), 451-465.
- Lukes, S. (2006). Individualism: ECPR Press.

- Ma, L., & Qu, Q. J. T. L. Q. (2010). Differentiation in leader-member exchange: A hierarchical linear modeling approach. 21(5), 733-744.
- Manata, B. J. J. o. L., & Studies, O. (2020). The effects of LMX differentiation on team performance: Investigating the mediating properties of cohesion. 27(2), 180-188.
- Markus, H. R., & Kitayama, S. J. P. r. (1991). Culture and the self: Implications for cognition, emotion, and motivation. 98(2), 224.
- Marstand, A. F., Martin, R., & Epitropaki, O. J. T. L. Q. (2017). Complementary personsupervisor fit: An investigation of supplies-values (SV) fit, leader-member exchange (LMX) and work outcomes. 28(3), 418-437.
- Marston, W. M., King, C. D., & Marston, E. H. (1999). Integrative Psychology: A Study of Unit Response: Routledge.
- Martin, I. (2017). Characteristics of Project Management and the Factor of Success: GRIN Verlag.
- Martin, R., Guillaume, Y., Thomas, G., Lee, A., & Epitropaki, O. J. P. p. (2016). Leader-member exchange (LMX) and performance: A meta-analytic review. 69(1), 67-121
- Mathieu, J. E., Kukenberger, M. R., D'innocenzo, L., & Reilly, G. J. J. o. A. P. (2015). Modeling reciprocal team cohesion-performance relationships, as impacted by shared leadership and members' competence. 100(3), 713.
- Mehrabian, A., & Russell, J. (1974). An Approach to Environmental Psychology.,(MIT Press: Cambridge, MA.).
- Mumtaz, S., & Rowley, C. J. M. R. Q. (2020). The relationship between leader-member exchange and employee outcomes: review of past themes and future potential. 70(1), 165-189.
- Nederhof, A. J. J. E. j. o. s. p. (1985). Methods of coping with social desirability bias: A review. 15(3), 263-280.
- Nowak, R. J. B. P. M. J. (2020). Process of strategic planning and cognitive diversity as determinants of cohesiveness and performance.
- Nunnally, J. C. (1994). Psychometric Theory 3E: Tata McGraw-Hill Education.
- O'Neill, T. A., Allen, N. J. J. G. D. T., Research, & Practice. (2014). Team task conflict resolution: An examination of its linkages to team personality composition and team effectiveness outcomes. 18(2), 159.
- Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. J. J. o. a. p. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. 88(5), 879.
- Podsakoff, P. M., & Organ, D. W. J. J. o. m. (1986). Self-reports in organizational research: Problems and prospects. 12(4), 531-544.
- Rahim, M. A. J. T. J. o. G. P. (1983). Measurement of organizational conflict. 109(2), 189-199. Robbins, S. P., & Judge, T. A. (2013). Organizational behavior (Vol. 4): New Jersey: Pearson
- Robbins, S. P., & Judge, T. A. (2013). Organizational behavior (Vol. 4): New Jersey: Pearson Education.
- Robbins, S. P., & Judge, T. A. (2017). Organizational Behavior: Pearson.
- Salcedo, J. F. (2016). Authentic leadership: A quantitative study of the effect of authentic leadership on group cohesion and work engagement in student organizations in mexico. Regent University,
- Scheepers, D., & Ellemers, N. (2019). Social identity theory. In Social psychology in action (pp. 129-143): Springer.
- Singelis, T. M. J. P., & bulletin, s. p. (1994). The measurement of independent and interdependent self-construals. 20(5), 580-591.
- Sliter, M. T., Pui, S. Y., Sliter, K. A., & Jex, S. M. J. J. o. O. H. P. (2011). The differential effects of interpersonal conflict from customers and coworkers: Trait anger as a moderator. 16(4), 424.

- Smriti, A., Prajya, R. V., & Park, H. S. (2015). LMX Differentiation: Understanding Relational Leadership at Individual and Group Levels. In (Vol. 263): The Oxford Handbook of Leader-Member Exchange.
- State-Davey, H. M. (2009). The Development of a Multidimensional Measure of Cohesion for Organizational Work Teams. University of Leicester,
- Sullivan, P. J., & Feltz, D. L. J. S. G. R. (2001). The relationship between intrateam conflict and cohesion within hockey teams. 32(3), 342-355.
- Tanskanen, J., Mäkelä, L., & Viitala, R. J. J. o. H. S. (2019). Linking managerial coaching and leader-member exchange on work engagement and performance. 20(4), 1217-1240.
- Tekleab, A. G., Quigley, N. R., Tesluk, P. E. J. G., & Management, O. (2009). A longitudinal study of team conflict, conflict management, cohesion, and team effectiveness. 34(2), 170-205.
- Tekleab, A. G., & Quigley, N. R. J. J. o. B. R. (2014). Team deep-level diversity, relationship conflict, and team members' affective reactions: A cross-level investigation. 67(3), 394-402.
- Turner, J. C., & Reynolds, K. J. (2010). The story of social identity. In Rediscovering social identity: Key readings: Psychology Press, Taylor & Francis.
- Utz, S. J. S., & Identity. (2004). Self-construal and cooperation: Is the interdependent self more cooperative than the independent self?, 3(3), 177-190.
- Van der Vliert, E. (2013). Complex interpersonal conflict behaviour: Theoretical frontiers: Psychology Press.
- Van der Voet, J., & Steijn, B. J. P. M. R. (2021). Team innovation through collaboration: how visionary leadership spurs innovation via team cohesion. 23(9), 1275-1294.
- van Gerwen, N., Buskens, V., van der Lippe, T. J. I. j. o. t., & development. (2018). Employee cooperative behavior in organizations: a vignette experiment on the relationship between training and helping intentions. 22(3), 192-209.
- Vîrgă, D., CurŞeu, P. L., Maricuţoiu, L., Sava, F. A., Macsinga, I., & Măgurean, S. J. P. o. (2014). Personality, relationship conflict, and teamwork-related mental models. 9(11), e110223.
- Wilder, J. (2014). Stimulus and Response: The Law of Initial Value: Elsevier Science.
- Yu, A., Matta, F. K., & Cornfield, B. J. A. o. M. J. (2018). Is leader-member exchange differentiation beneficial or detrimental for group effectiveness? A meta-analytic investigation and theoretical integration. 61(3), 1158-1188.
- Zhou, M., & Shi, S. (2014). Blaming leaders for team relationship conflict? The roles of leader-member exchange differentiation and ethical leadership. Nankai Business Review International, 5(2), 134-146. doi:10.1108/NBRI-09-2013-0036
- Zivnuska, S., Kacmar, K. M., & Valle, M. J. C. D. I. (2017). The mechanisms of regulatory focus: Mindfulness, leader-member exchange, and motivational outcomes.